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Abstract Molecular markers based upon a novel let-
tuce LTR retrotransposon and the nucleotide binding
site-leucine-rich repeat (NBS-LRR) family of disease
resistance-associated genes have been combined with
AFLP markers to generate a 458 locus genetic linkage
map for lettuce. A total of 187 retrotransposon-spe-
cific SSAP markers, 29 NBS-LRR markers and 242
AFLP markers were mapped in an F2 population,
derived from an interspecific cross between a Lactuca
sativa cultivar commonly used in Europe and a wild
Lactuca serriola isolate from Northern Europe. The
cross has been designed to aid efforts to assess gene
flow from cultivated lettuce into the wild in the per-
spective of genetic modification biosafety. The markers
were mapped in nine major and one minor linkage
groups spanning 1,266.1 cM, with an average distance
of 2.8 cM between adjacent mapped markers. The
markers are well distributed throughout the lettuce
genome, with limited clustering of different marker
types. Seventy-seven of the AFLP markers have been
mapped previously and cross-comparison shows that

the map from this study corresponds well with the
previous linkage map.

Introduction

Molecular markers have revolutionized genetic analysis
of crop plants, where they play an important role in
linkage analysis, physical mapping, quantitative trait
loci (QTL) analysis, marker-assisted selection and map-
based cloning (Bernatsky and Tanksley 1989; Lande and
Thompson 1990; Knapp 1998). Genetic linkage maps
based on a variety of molecular markers have become
important tools for the analysis of plant genomes and
aid in various plant breeding and genome analyses
activities (Jeuken et al. 2001). Accurate, high-resolution
genetic maps are very important tools to locate the genes
encoding desirable traits. Once flanking markers affect-
ing a particular trait are identified, marker-assisted
selection can be performed at the DNA level to accel-
erate the improvement of crop plants or livestock.

The efficiency of marker-assisted genetic analysis has
been greatly increased with the availability of various
kinds of dominant and co-dominant markers such as
AFLP, Sequence-specific amplification polymorphisms
(SSAP), SSRs and nucleotide binding site (NBS) pro-
filing etc. (Vos et al. 1995; Waugh et al. 1997; Mei et al.
2004; van der Linden et al. 2004; Syed et al. 2005). The
usefulness of any given marker system depends on the
species under study and the chosen application. SSR
(microsatellite) markers are powerful because they are
co-dominant in nature, multi-allelic and hence more
informative, compared to these other marker types.
However, they require significant input for their dis-
covery and their hypermutability brings disadvantages
in situations where wide germplasm is under analysis
because of the possibility of homoplasy.

For crops where there is little or no DNA sequence
information available, anonymous multiplex marker
systems, such as AFLP and its derivatives have been
favored (Vos et al. 1995; Sebastian et al. 2000; Jeuken
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et al. 2001). AFLP is a PCR-derived method that reveals
multiple restriction fragment length polymorphisms as
bands on a gel, without the need for any sequence
information of the DNA under study. In this way hun-
dreds of anonymous molecular markers can be gener-
ated rapidly in any species. AFLP markers have been
extensively used for genetic mapping and QTL analysis
in different species (e.g. Castiglioni et al. 1999; Klein
et al. 2000; Sebastian et al. 2000; Jeuken et al. 2001). The
efficiency of AFLP markers has been further enhanced
by the development of co-dominant scoring software by
Keygene but this has increased the expense of the
method.

Sequence-specific amplification polymorphisms mar-
ker technology (Waugh et al. 1997) was developed from
AFLP (Vos et al. 1995) and anchored PCR applied to
transposable elements (Korswagen et al. 1996). SSAP is
an anchored AFLP approach that uses a locus-specific,
labeled primer, together with an adapter-specific primer
to convert the gap between any locus-specific DNA se-
quence and a flanking restriction site into a gel band.
SSAP was initially developed using long terminal repeat
(LTR) retrotransposon insertions as loci (Waugh et al.
1997; Ellis et al. 1998). SSAP has been applied to barley,
pea, wheat and alfalfa. In these studies SSAP markers
revealed twofold to threefold higher polymorphism rates
per primer combination than AFLP markers (Waugh
et al. 1997; Ellis et al. 1998; Flavell et al. 1998; Gribbon
et al. 1999; Porceddu et al. 2002; Queen et al. 2004). The
transposon display approach, which uses another
transposon type called miniature inverted repeat trans-
posable elements (MITEs) is virtually identical to SSAP
and has been deployed in Maize (Casa et al. 2000).

Anchored AFLP has also been applied to specifically
target resistance genes (R genes) of the nucleotide bind-
ing site-leucine-rich repeat (NBS-LRR) class (Van der
Linden et al. 2004). This approach, called NBS profiling,
offers the potential advantage that the markers are
automatically linked to potentially useful ‘functional’
genes. The NBS-LRR family represents by far the largest
class of currently identified plant R genes, many of which
are exploited intensively in breeding practices (Van der
Linden et al. 2004). Because of the high level of conser-
vation of the NBS domain between species, degenerate
locus-specific primers can be used, with no other se-
quence information needed. NBS profiling resembles
SSAP, in that it also anchors a PCR reaction to a specific
genomic sequence with a motif-specific primer and an
adapter primer. However, it is not based on the protocol
and adapters utilized by AFLP. NBS profiling has been
successfully applied for mapping of resistance gene ana-
logues (Calenge et al. 2005) and biodiversity studies
(Reeves et al. 2004; Mantovani et al. 2004).

Different marker types target different genomic re-
gions and show different distribution patterns (Klein
et al. 2000; Sebastian et al. 2000; Mei et al. 2004; van der
Linden et al. 2004). Therefore, a diversity of different
molecular markers is preferable for a versatile molecular
marker map. To construct a detailed linkage map of

lettuce we have employed the three technically similar
but diverse techniques of AFLP, SSAP and NBS pro-
filing. The markers have been revealed in an interspecific
cross between a Lactuca sativa cultivar commonly used
in Europe and a wild Lactuca serriola isolate from
Northern Europe, with the goal of using the markers to
assess gene flow from cultivated lettuce into the wild, as
a model for genetically modified (GM) crop release (Van
de Wiel et al. 2003), a subject that has gained substantial
public and scientific concern over the last decade (Hails
2000; Gray 2004; Snow et al. 2005). This has also given
us the opportunity to compare these three marker types
for their accessibility and genomic distribution in this
species.

Materials and methods

Plant materials and DNAs

An F2 population of 90 individuals was generated from
an interspecific cross of Lactuca serriola DH_M21(SER)
(P1) · L. sativa cv Dynamite (Nunhems zaden, 01-2002,
60826) (P2). DH_M21(SER) was collected from the wild
in Eys, The Netherlands in 2001 (Hooftman et al. 2005).
The interspecific hybridisation followed standard pro-
tocols as described by Nagata (1992) and Ryder (1999).
DNAs were extracted from lettuce seedlings by a mod-
ified CTAB extraction method (Saghai-Maroof et al.
1984; Virk et al. 1999).

Isolation and characterization of retrotransposon LTR
sequences from lettuce

(i) LTR characterisation for Ty1-copia group
retrotransposons

For isolating lettuce LTR sequences from Ty1-copia
group retrotransposons, the protocol of Syed et al.
(2005), a modification of the method of Pearce et al.
(1999), was used. This is basically the SSAP approach,
with modifications, using two nested degenerate primers
to PCR amplify unidirectionally outwards from a con-
served protein-coding region in the retrotransposon
interior towards the LTR. The LTR-interior junction
sequence is recognized by the presence of conserved
motifs (Fig. 1a).

(i) LTR characterisation for Ty3-gypsy group
retrotransposons

Long terminal repeat sequence from the Ty3-gypsy
group retrotransposon Tls2 was obtained by the same
basic methodology as used for Ty1-copia group retro-
transposons, with the difference that the start point for
the walk outwards from the retrotransposon interior
was derived from the QGB4co9 EST, whose sequence
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comes from the integrase gene of a Ty3-gypsy group
retrotransposon near the interior-LTR junction (EMBL
accession BQ856448). The LTR-interior junction was
identified from the walk sequence in the same way as
described earlier (Fig. 1b).

AFLP molecular marker analysis

AFLP analysis was performed according to Vos et al.
(1995). The primer combinations used for the mapping
were selected based on a prescreening of the parent
individuals and the estimation of genome coverage,
based on the information of the proprietary Keygene
integrated lettuce genetic linkage map (unpublished). 6
EcoRI/MseI and 6 KeyGene proprietary primer com-
binations (PCs) were used (Table 1). All AFLP markers

were scored as co-dominant by using the proprietary
software developed by KeyGene.

SSAP molecular marker analysis

The SSAP procedure was performed exactly as described
by Syed et al. (2005), a modification of Waugh et al.
(1997). The Ty1-copia group retrotransposon Tls1-spe-
cific primer isolated by the gene-walker approach was
TAAAAGATAACGTCAACACA, plus T, A or G
selective base. The Tls2 Ty3-gypsy group retrotranspo-
son primer was ACCAGGAACCGGGTGCTACA plus
T, C or G selective base. The selective bases on the ret-
rotransposon-specific primers were chosen to introduce
mismatches with the bases immediately preceding the
corresponding 3¢ LTRs, thus inhibiting the production of

pr

pr

Fig. 1 Structural features of Ty1-copia and Ty3-gypsy group
retrotransposons and identification of LTR sequences for Tls1
and Tls2. The RNAseH-PPT-LTR junction sequence of Tls1
obtained in this study is compared with the consensus region for
Ty1-copia retrotransposons (not to scale; adapted from Pearce
et al. 1999). The sequence of Tls2 is also shown, showing the

different arrangement of genes for Ty3-gypsy group retrotranspo-
sons (int-PPT-LTR). The sequences and polarities of the primers
for the SSAP experiments are shown with arrows on the diagram
and below the sequences themselves. The SSAP marker method
amplifies fragments extending leftwards from the leftmost arrows in
the figure

Table 1 Primer combinations
for AFLP and SSAP markers
are shown with the number of
polymorphic markers generated
for each of them

AFLP SSAP

Primer
combination

No. of
markers

Primer
combination

No. of
markers

Primer
combination

No. of
markers

E35/M48 28 GTG 7 AAG 8
E35/M49 21 TCT 18 ACG 9
E35/M59 37 CTA 14 ACT 15
E44/M48 23 AAT 17 ATA 9
E44/M49 22 AAC 13 ATC 10
E45/M48 30 ATG 13 ATT 10
1A39 18 GTT 16 CTC 17
1A36 23 CTG 17 CTT 11
1A40 12 TCC 13
1A37 15 ACA 19
1A38 13
1A31 20
Total 262 147 89
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SSAP products from the 3¢ LTRs of Tls1 and Tls2, which
show no polymorphism and are unmappable, because
they represent multiple retrotransposon internal se-
quences. For the F2 mapping study three selective bases
were also used on the adapter primer to reduce the gel
band number to a manageable level.

NBS profiling

NBS profiling was performed as described by Van der
Linden et al. (2004), with modifications. In brief, ca.
200 ng of genomic DNA was digested with restriction
enzyme Mse I, and the adapter was ligated to the frag-
ment ends in a single reaction in 5·RL+ buffer (Vos
et al. 1995), 1 mM ATP, 10 U Mse I, and 1 U T4 DNA
ligase in 60 ll reaction volume. Next, 2.5 ll of the RL
mixture was used as a template in PCR with 20 pmol of
NBS-specific primer, 20 pmol of adapter primer,
0.25 mM dNTPs, 0.4 U HotStar Taq DNA polymerase
(Qiagen), 2.5 ll 10· PCR buffer in a total volume of
25 ll. PCR conditions were an initial 15 min at 95�C,
and 30 cycles of [0.5 min 95�C, 1.4 min 55�C (primer
NBS5a; YYTKRTHGTMITKGATGAYGTITGG) or
60�C (primer NBS3; GTWGTYTTICCYRAICCISSC-
ATICC), 2 min 72�C]. The mixture was diluted 10 times
with distilled water, and 5 ll was used as a template in a
second PCR with a c33P-ATP labeled NBS-specific pri-
mer (0.5 pmol), 2 pmol of adapter primer, 0.25 mM
dNTPs, 0.4 U HotStar Taq DNA polymerase, 2.5 ll
10· PCR buffer in a total volume of 25 ll. Samples were
electrophoresed on 6% polyacrylamide sequencing gels
and visualized by autoradiography.

Genetic linkage mapping

Genetic mapping of the scored markers in the F2 of
L. sativa (DH_M21(SER)) · L. serriola population was
carried out by using JoinMap 2.0 (Stam and van Ooijen
1995). For the F2 segregation ratios, a test for skewness
was performed, with a 0.5% threshold level for sig-
nificance. AFLP markers scored co-dominantly were
tested against the predicted 1:2:1 ratio (corresponding
to homozygous L. sativa:heterozygotes:homozygous
L. serriola. Dominantly scored SSAP and NBS markers
were tested against the predicted 3:1 ratio, representing
[homozygote + heterozygote]:[homozygotes] by marker
band presence:absence, respectively. Markers were as-
signed to linkage groups (LGs) by increasing the LOD
score for grouping with steps of one LOD unit. Mapping
was carried out with the following thresholds; REC of
0.45, LOD of 0.01, JUMP of 4 and TRIPLET of 7. No
order was forced during the linkage analysis. Recombi-
nation frequencies were converted to map distances in
centimorgans (cM) using the Kosambi mapping func-
tion (Kosambi 1943) and the genetic map was drawn
using the MapChart program (Voorrips 2002).

Results

Isolation of LTR sequences and SSAP marker
development in lettuce

No prior DNA information is needed for the application
of AFLP markers in lettuce but the development of
SSAP in this species requires sequence information for
the terminal regions of the retrotransposon (Waugh
et al. 1997). The LTR sequences are present at the ends
of LTR retrotransposons and consist of identical direct
repeats (Fig. 1). Unfortunately, the LTR sequences
cannot be predicted as they do not contain any con-
served motifs and they are usually too long to allow
SSAP from regions internal to them (Waugh et al. 1997).
Therefore, to obtain LTR sequence information, SSAP
is performed outwards from conserved genic regions in
the retrotransposon interior (Pearce et al 1999; Syed
et al. 2005). The interior-LTR junction can often be
recognized quite easily by the presence of a short
polypurine tract (PPT) followed by a consensus TGTRG
motif, which represents the end of the LTR (Pearce et al.
1999). The LTR sequence thus obtained from one end of
the retrotransposon can then be used to design SSAP
primers facing outwards from the LTR at the other end.

Using the previous approach one convincing LTR
sequence was obtained for a Ty1-copia group retro-
transposon (Fig. 1a), which we have termed Transpo-
son, Lactuca sativa (Tls1). For the Ty1-copia group,
directional amplification proceeds outwards from two
closely spaced, highly conserved motifs in the RNAseH
gene, using a nested pair of degenerate PCR primers
(Pearce et al. 1999). The RNAseH open reading frame,
containing several conserved amino acid residues, con-
tinues for 18 codons before a stop codon, which is fol-
lowed by a spacer region, and then the PPT follows and
the TGTTG motif, characteristic of the LTR end
(Fig. 1a).

To isolate an LTR from the gypsy subgroup of LTR
retrotransposons a different approach is necessary, be-
cause no well-conserved motifs for SSAP are adjacent to
the LTRs. Fortunately, an EST clone (Co9 in Fig. 1b)
containing C-terminal sequence from the integrase gene
of Ty3-gypsy group retrotransposons was generously
provided to us by A. Kozic and R. Michelmore. This
sequence was used as a start point to walk outwards
from the int gene in the direction of the LTR (Fig. 1b).
Again, the presence of a PPT followed by TGTT motif
characterized the end of the Ty3-gypsy group retro-
transposon LTR, which we have called Tls2.

Sequence-specific amplification polymorphisms
primers specific for the LTRs of Tls1 and Tls2 were
designed to amplify DNA in an upstream direction
from the 5¢ LTRs of corresponding retrotransposon
insertions (Fig. 1). To optimize the SSAP protocol for
lettuce the two parents of our F2 mapping population
were used (L. serriola and L. sativa; Fig. 2). The
quality of banding patterns produced by Tls2 with
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various primer combinations was significantly superior
to that of Tls1, so the former was used exclusively in
subsequent analyses. Using 18 primer combinations, a
total of 236 polymorphic SSAP bands were scored in

the F2 population, an average of ca. 13 markers per
primer combination. An example is shown in Fig. 3a.

NBS-profiling marker development in Lettuce

Nucleotide binding site-profiling has been developed to
work with similar primers and enzymes in a number of
crops without modifications (Van der Linden et al.
2004). On the basis of available sequences for Lactuca
resistance gene analogue sequences, we decided to use
the NBS3 primer, which is virtually identical to the
NBS2 primer of Van der Linden et al. (2004) and NBS5
primer as used by the same workers. DNA was digested
with Mse1. Trial experiments with samples run in
duplicate showed that the procedure is highly repro-
ducible in lettuce (Fig. 3). Each of the profiles generated
between 60 and 90 bands, of which about half were
polymorphic within a L. sativa cultivar set, and more
were polymorphic between species (Fig. 3). This vali-
dated marker system of NBS profiling was then used to
genotype the F2 genetic mapping population.

To get an indication of the resistance gene analogue
(RGA) content in lettuce, a number of bands from each
profile were sequenced. For the NBS5 primer, several
bands could be positively identified as putative RGAs
(Van der Linden et al. 2004; our unpublished results).
These included RGC2 candidates, of which one has been
identified as the Dm3 gene (Meyers et al. 1998). A sub-
stantial number of bands (more than 50%) had no sig-
nificant similarity to any of the sequences in the
database (using standard settings for the XBLAST and
the NBLAST programs).

Linkage analysis in lettuce

The mapping population chosen for this study was de-
signed to contain segregating markers, which could be of
use in the study of introgression of cultivated lettuce
genetic material into wild germplasm. The population
was generated initially from an interspecific F1-cross
between L. serriola (P1) and L. sativa (P2). For the lat-
ter, we used a common European cultivar (cv. Dyna-
mite: Nunhems zaden, 01-2002, 60826: purchased April
2002). This line possesses genetic material from another
wild relative (L. virosa) and may possess genetic material
originally derived from L. serriola The L. serriola parent
lineage [DHM21(ser)] comes from the Netherlands, it
forms part of the University of Amsterdam’s L. serriola
seed collection and was sampled in 2001. DHM21(ser)
was derived from a road verge population in Eys,
province of Limburg, within the core of the historic
(nineteenth and early twentieth century) L. serriola dis-
tribution. This large population is known to fluctuate
between 1,000 and 100,000 or more reproductive plants
(Hooftman et al. 2005). Furthermore, no private gar-
dens exist in its close vicinity, which could be the source
of recent contaminating genes from L. sativa.

Fig. 2 SSAP marker profiles of Tls1 and Tls2. Profiles are shown
for the two parents of the mapping population; Lactuca serriola (1)
and Lactuca sativa (2). Tls1 and Tls2 retrotransposon-specific
primers had A and T selective bases, respectively, at their 3¢ ends
and, in both cases, CA on the Mse I adapter primer
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The 187 SSAP and 29 NBS markers described pre-
viously were complemented with 242 newly generated
AFLP markers, to allow cross-comparison between the
three marker methods and to increase the diversity of
marker types represented (see Introduction). Altogether,
458 of the 536 markers were assigned to nine major and
one minor linkage group (LG) at a logarithm of the odds
(LOD) threshold of 5 (Fig. 4). The 458 markers gave a
total map length of 1,266.1 cM and an average genetic
distance between adjacent mapped loci as 2.76 cM
(Fig. 4). The genetic map generated here also corre-
sponds well with the integrated genetic linkage map of
Keygene, which is derived from the map of Jeuken et al.
(2001) (data not shown). LGs 1–9 in our map corre-
spond to LGs 1–9 in the Jeuken et al. map. The status of
LG 10 is unclear at present (lettuce has nine chromo-
somes). Altogether, LGs 1–9 of the integrated map
contain 5, 8, 10, 8, 10, 6, 13, 8 and 9 AFLP markers,
respectively, from the F2 map described here. These
bridging markers show similar distributions on the two
linkage maps. However, a few differences are apparent,
which could be due to mobility error, co-migration of
bands and/or rounding errors of marker names.

The length of a previously published map based on
RFLP and RAPD markers was 1,950 cM for 13 major

and 4 minor linkage groups (Kesseli et al. 1994). AFLP
markers on our map of 1,266.1 cM correspond well to
the 854 cM map of Jeuken et al. (2001). The addition of
SSAP and NBS markers has contributed to an increase
in the overall map length of our map but it is still much
smaller than the map of Kesseli et al. (1994), which was
based on 66 F2 individuals, and RAPD markers (41% of
the map), which are not considered to be a totally
reproducible marker class (Jeuken et al. 2001). The
proportions of each marker type that failed to map were
8, 20 and 23% for AFLP, SSAP and NBS, respectively.
Aside from the single small linkage group, the map
corresponds well with the nine chromosomes of lettuce.

Marker distribution

All the markers appear to be quite randomly distributed
along all LGs, except LGs 7 and 8, which show rather
few markers in the lower parts of these linkage groups. If
the AFLP, SSAP and NBS markers were evenly dis-
tributed across the LGs, they should be present on each
at a ratio of 0.52:0.40:0.08, respectively. In total, (21, 10,
2); (20, 15, 3); (33, 23, 7); (25, 24, 2); (42, 38, 5); (13, 14,
1); (31, 22, 3); (22, 17, 2); (28, 22, 3); (7, 2, 1) AFLP,

Fig. 3 SSAP, NBS and AFLP marker profiles in a segregating lettuce F2 population. Markers used for this study are arrowed. Primer
combinations for SSAP and NBS profiling were Tls2+TCT and NBS5a/MseI, respectively
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SSAP and NBS markers were mapped on LGs 1–10,
respectively. These ratios are indeed very close to the
expected values, based on the chi square test, except LG
1. However, even for LG 1, the chi square test failed to
pick any statistically significant difference between the
markers (data not shown). As mentioned above, 77
AFLP markers could be identified on the Keygene
integrated map, developed from that of Jeuken et al.
(2001), and in general the locations agree between the
two maps.

Segregation distortion of genetic loci

For the majority of the marker loci mapped here (ca.
81%) the observed genotypic frequencies do not differ
significantly from the expected segregation ratios of
1:2:1 for co-dominant AFLP and 3:1 for dominant
SSAP and NBS-LRR markers, respectively. Segregation
distortion based on the chi square test (data not shown)

was significant for 88 loci (ca. 19% of the markers),
including 59 AFLP, 24 SSAP and 5 NBS loci, mapped in
various LGs (shown in bold font markers on the map in
Fig. 4). Roughly half of these cluster into four regions of
LGs 1, 3, 4 and 5, respectively. The rest are quite ran-
domly distributed throughout the genome. LG3 shows
the maximum number of markers deviating from normal
ratios, whereas LG4 shows a cluster of markers with
segregation distortion in the lower part of the map. The
abnormal allele ratios were evenly distributed between
the two parental chromosome sets (data not shown).

Discussion

In this study, we have used three complementary
marker technologies to generate a genetic linkage map
for lettuce. The application of the SSAP approach has
required the isolation of LTR sequence information
from retrotransposons of lettuce and two novel lettuce

LG3

Tls2C-ATG-225-SAT0.0
E44/M49-F-212-SAT7.9
01-ser 1A38-123-SAT8.8
Tls2C-GTG-405-SER10.8
E44/M49-F-082-SAT11.6
Tls2C-AAT-305-SER13.1
Tls2C-CTG-328-SER18.8
E45/M48-F-207-SER21.5
E35/M59-F-092-SER21.6
Tls2C-CTA-600-SAT24.2
Tls2C-TCT-154-SER25.7
34-sat26.5
E35/M59-F-281-SER27.2
1A39-076-SAT28.7
Tls2C-CTA-325-SAT29.7
Tls2C-TCT-750-SER31.9
1A39-114-SER33.8
E35/M48-F-098-SER34.5
E44/M49-F-479-SAT37.1
Tls2C-AAC-186-SER37.4
E35/M49-F-074-SER43.1
1A38-148-SER44.8
E44/M49-F-362-SAT44.9
E45/M48-F-287-SER46.6
18-sat47.1
Tls2-ACG-10-SER50.2
Tls2C-ACG-11-SER50.8
E45/M48-F-206-SER51.4
20-ser52.0
1A36-195-SAT 1A40-176-SER52.2
E35/M48-F-364-SAT52.3
1A31-107-SAT52.4
E35/M59-F-299-SAT52.5
Tls2C-CTA-142-SAT53.1
E35/M49-F-096-SAT53.8
Tls2C-GTT-241-SER58.8
Tls2C-ATG-125-SER67.4
E35/M49-F-202-SAT68.9
32-ser 1A31-123-SER
1A31-122-SER72.5

1A31-124-SER73.1
Tls2C-ATG-72-SAT77.5
35-ser83.0
Tls2C-GTG-70-SAT87.8
Tls2-ATA-06-SER89.0
Tls2C-TCT-145-SER91.8
1A37-059-SAT97.4
Tls2C-ACA-68-SER102.6
09-satTls2C-TCT-85-SER106.6
Tls2C-CTG-380-SER112.4
E35/M59-F-193-SAT117.1
E35/M59-F-187-SER117.2
1A31-347-SER125.1
Tls2C-CTA-285-SAT129.6
Tls2C-TCC-181-SER130.2
E44/M49-F-101-SER132.0
1A38-090-SER134.5
E35/M48-F-061-SAT137.0
E35/M49-F-207-SER142.6

LG2
LG1

E44/M48-F-311-SER0.0
E45/M48-F-235-SER1.9
E35/M49-F-182-SAT3.8
Tls2C-AAC-141-SER9.5
23-ser13.2
E35/M48-F-276-SER13.6
C09C-ACT-12-SAT17.0
Tls2C-ATG-192-SAT19.8
E35/M59-F-273-SAT25.0
E35/M48-F-070-SER26.0
E35/M48-F-293-SER27.5
21-ser29.0
Tls2C-CTG-75-SAT31.9
30-ser32.4
E44/M48-F-147-SAT39.6
E35/M59-F-256-SAT40.0
1A40-128-SAT48.4
1A39-237-SAT51.9
1A39-134-SAT53.0
E35/M59-F-234-SAT53.9
1A38-392-SAT60.4
Tls2C-ACT-04-SER61.4
Tls2C-ATC-10-SAT62.4
E45/M48-F-130-SAT63.0
E45/M48-F-274-SAT63.6
Tls2C-CTT-08-SER65.3
Tls2C-ACG-14-SAT67.4
1A38-174-SER69.2
E45/M48-F-107-SAT74.2
Tls2C-GTT-94-SER79.2
Tls2C-CTT-14-SAT79.5
Tls2C-GTT-216-SER81.3
Tls2C-CTG-460-SER84.3
Tls2C-TCT-93-SAT86.4
Tls2C-CTG-319-SER90.5
Tls2C-TCT-392-SER94.1
1A36-104-SER96.5
1A40-102-SER102.5

E35/M49-F-193-SER0.0
Tls2C-ACA-267-SER1.7
E35/M59-F-127-SER4.1
E35/M59-F-083-SAT9.8
Tls2C-TCT-115-SAT11.0
E35/M59-F-190-SER12.7
E45/M48-F-070-SAT16.1
Tls2C-CTT-13-SAT16.3
1A40-368-SAT16.6
1A37-241-SER17.2
Tls2C-ACG-08-SER18.0
Tls2C-ACA-300-SER20.1
Tls2C-CTG-230-SAT20.3
1A36-136-SAT27.2
33-sat28.0
E35/M49-F-278-SER28.1
E45/M48-F-295-SAT28.7
E35/M49-F-137-SAT29.0
13-ser29.5
E44/M48-F-297-SAT33.5
1A37-089-SAT37.0
E44/M48-F-109-SAT40.9
1A39-181-SAT51.9
Tls2C-TCT-204-SAT60.2
1A37-231-SAT63.2
1A38-373-SAT64.1
1A39-342-SER64.9
Tls2C-ACA-440-SER69.0
Tls2C-ATC-11-SAT71.0
E44/M48-F-114-SER78.8
E35/M48-F-410-SAT79.8
Tls2C-ATA-05-SER86.3
E45/M48-F-297-SAT97.3

Fig. 4 Linkage map for an F2

population derived from a cross
between L. sativa · L. serriola.
Markers shown in bold exhibit
skewed segregation, and SER
or SAT designations refer to the
origin of alleles from L. serriola
or L. sativa, respectively. NBS
markers are boxed, SSAP
markers are prefixed by Tls2
and AFLP markers by E or 1A
(see Table 1)
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LTRs have been isolated, one corresponding to a Ty1-
copia group LTR retrotransposon and the other to a
Ty3-gypsy group retrotransposon. The SSAP and NBS
profiling molecular marker methods have been vali-
dated for lettuce and the 216 markers generated using
these methods have been complemented by a further
242 AFLP markers, giving a reasonably high resolution

genetic map for lettuce, which has allowed us to com-
pare the performances of the three marker types.

The two LTRs isolated in this study produced useful
marker systems, but Tls2 marker profiles were of higher
reproducibility and polymorphism level (Fig. 2), so these
have been used exclusively in this study. Judging from
the number of selective bases needed to deduce the SSAP

LG5
24-ser0.0
1A40-120-SAT0.3
E35/M59-F-381-SER1.2
Tls2C-CTC-17-SAT3.3
Tls2C-CTC-07-SAT5.1
Tls2C-ACT-06-SER8.3
1A40-215-SER 1A40-217-SAT12.4
E44/M48-F-223-SER13.5
Tls2C-CTC-04-SER18.8
1A36-146-SER22.6
Tls2C-ACG-05-SER22.8
Tls2C-AAT-162-SER28.4
1A36-064-SAT29.4
1A36-066-SER30.4
1A31-129-SER35.9
Tls2C-ACA-181-SAT38.7
E35/M59-F-361-SER40.7
Tls2C-AAC-140-SAT42.3
1A31-224-SAT43.7
Tls2C-ATT-14-SER46.0
E35/M59-F-210-SER53.1
Tls2C-CTC-11-SAT55.2
E44/M48-F-292-SER57.5
Tls2C-ACA-108-SER59.9
1A36-435-SER62.4
Tls2C-CTG-96-SAT66.0
Tls2C-ATC-05-SAT66.6
1A31-283-SER67.7
Tls2C-ACA-109-SAT70.3
TLs2C-ATC-02-SER70.8
TLs2C-ACG-13-SER72.6
Tls2C-AAT-200-SAT75.6
Tls2C-CTG-750-SER76.5
Tls2C-TCT-107-SAT76.7
Tls2C-ACT-09-SAT78.5
1A39-409-SER82.7
Tls2C-AAT-172-SAT84.6
1A36-160-SER86.7
Tls2C-GTT-191-SAT90.3
15-sat94.9
Tls2C-GTT-73-SAT99.3
E45/M48-F-075-SER105.6
Tls2C-AAC-165-SAT107.3
E44/M49-F-316-SER 1A39-147-SAT107.9
E45/M48-F-356-SAT108.4
E44/M48-F-214-SER108.7
E45/M48-F-127-SER109.6
E35/M48-F-376-SAT109.7
1A37-137-SER109.9
E35/M59-F-129-SER110.3
Tls2C-ACA-64-SER110.9
Tls2C-GTG-111-SAT111.0
Tls2C-GTT-213-SER111.5
Tls2C-TCC-235-SER112.6
Tls2C-CTG-178-SAT112.8
E35/M59-F-309-SAT115.7
Tls2C-AAC-338-SER E45/M48-F-171-SAT117.0
E35/M59-F-270-SAT117.3
E35/M49-F-114-SAT117.9
E35/M48-F-287-SER118.6
1A37-288-SAT119.1
E35/M59-F-197-SAT119.9
10-sat120.1
E44/M48-F-348-SER122.2
E35/M49-F-370-SER123.0
E35/M59-F-178-SER126.2
E35/M59-F-182-SAT126.5
22-ser129.0
Tls2C-CTC-19-SAT129.9
Tls2C-AAT-431-SAT131.5
1A38-150-SAT132.2
1A36-156-SER133.2
26-sat134.3
Tls2C-ACA-200-SER136.5
Tls2C-ACA-201-SAT137.6
Tls2C-AAT-340-SER140.2
Tls2C-TCT-95-SAT145.5
Tls2C-ATG-193-SAT155.3
1A36-227-SAT159.6
E35/M48-F-081-SER161.9
E35/M59-F-198-SAT163.9
Tls2C-CTC-03-SAT172.4

0.0
4.2
7.1
7.8

11.7
13.1
13.9
18.8
30.2
33.9
40.0
43.4
45.1
45.7
46.9
51.1
53.7
55.6
56.6
57.8
68.6
69.2
69.8
71.6
82.8
82.9
84.8
88.8

LG4

LG61A38-067-SAT0.0
1A38-163-SAT1.6
1A39-391-SER3.7
Tls2C-AAC-580-SER6.5
E44/M49-F-360-SAT13.6
E44/M48-F-094-SAT14.7
E44/M48-F-096-SER15.2
Tls2C-TCC-202-SAT17.5
Tls2C-GTT-88-SER20.0
Tls2C-GTT-148-SAT25.0
1A31-429-SER28.9
Tls2C-AAC-320-SAT32.0
E35/M59-F-220-SAT36.9
E35/M49-F-223-SER47.5
E35/M59-F-276-SAT49.1
Tls2C-TCC-281-SAT52.1
Tls2C-ATT-09-SAT58.8
Tls2C-ATT-10-SAT60.8
Tls2C-TCT-175-SER62.8
Tls2C-GTG-310-SAT63.4
E45/M48-F-071-SER75.8
E35/M48-F-141-SER77.9
Tls2C-CTT-12-SAT83.4
Tls2C-ACT-05-SAT94.1
Tls2C-ACA-97-SER95.1
Tls2C-CTA-102-SAT100.5
06-ser100.7
1A37-201-SER101.3
E44/M48-F-387-SER102.1
Tls2C-CTC-01-SAT102.9
E35/M59-F-126-SER104.1
TLs2C-CTC-20-SAT104.7
Tls2C-CTC-21-SER106.7
Tls2C-TCC-167-SER109.2
E44/M49-F-151-SER110.4
1A37-184-SER111.7
1A31-259-SAT112.2
14-ser113.3
1A39-087-SER114.0
Tls2C-ACT-11-SER116.8
E44/M48-F-119-SER126.2
Tls2C-ACA-262-SAT132.6
E44/M49-F-092-SER134.3
E35/M48-F-166-SAT139.3
Tls2C-AAC-226-SER146.6
E35/M49-F-268-SAT150.1
Tls2C-ACA-470-SAT152.2
TLs2C-CTC-10-SER153.3
E35/M59-F-328-SER155.8
1A36-250-SAT157.8
Tls2C-GTG-193-SAT160.5

1A40-130-SER
Tls2C-ACA-124-SER
07-ser
1A36-304-SAT
Tls2C-ATT-13-SAT
1A37-309-SAT
Tls2C-TCC-145-SAT
E35/M48-F-063-SAT
Tls2C-CTG-220-SAT
E44/M49-F-246-SER
Tls2C-ACG-04-SER
Tls2C-AAG-05-SER
E35/M59-F-217-SAT
Tls2C-ATT-05-SAT
Tls2C-TCT-700-SER
1A36-055-SER
Tls2C-ACG-12-SAT
Tls2C-AAG-08-SAT
Tls2C-CTT-06-SAT
1A36-089-SAT
E44/M49-F-475-SER
1A31-296-SAT
E44/M49-F-056-SAT
E35/M59-F-103-SAT
Tls2C-CTC-08-SAT
Tls2C-CTA-253-SER
E35/M48-F-182-SAT
Tls2C-CTA-240-SER

Fig. 4 (Contd.)
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band number to a manageable number the copy num-
bers of these transposons are quite high (�800–1,000).
Their broad genomic distribution (Fig. 4) is consistent
with this. The distribution of Tls2 SSAP markers sug-
gests that it has no pronounced preference for inserting
into particular genomic regions. This observation fur-
ther proves the usefulness of SSAP markers for linkage
mapping and their subsequent use in various genome
analysis activities as explained elsewhere in this article.

Fewer NBS profiling markers were obtained than the
other two marker types. This is an inherent property of
such markers, as each in principle corresponds to a
member of the NBS-LRR resistance gene analogue gene
family that is present in far lower numbers in the plant
genome than retrotransposons (SSAP) or restriction

sites (AFLP). The usefulness of NBS-LRR markers is
their close linkage to potentially important resistance
genes. This is likely to be an important factor in
the survival of genomic segments transferred between
L. sativa and L. serriola and is thus highly relevant to
gene flow studies in these species. The well-studied Dm3
NBS-LRR resistance gene, which confers resistance to
infection by the downy mildew fungus Bremia lactucae,
(Meyers et al. 1998), is located around 25 cM on chro-
mosome 2. NBS markers 21-ser or 23-ser map to this
approximate location and may derive from RGAs in a
closely linked gene cluster. Sequence analysis of the
NBS-LRR bands shows that less than 50% correspond
to identifiable RGAs (data not shown). This may be due
to the relative scarcity of RGA sequences from members

E35/M49-F-111-SAT
E45/M48-F-317-SER
Tls2C-GTT-155-SER
Tls2C-CTA-406-SER4.3
Tls2C-ATA-04-SAT6.3
Tls2C-AAG-06-SAT12.5
E44/M49-F-248-SAT14.2
1A38-231-SAT14.8
1A36-171-SAT15.3
Tls2C-ACG-02-SER15.6
E45/M48-F-142-SAT15.9
Tls2C-ACT-10-SER17.7
E44/M48-F-234-SER23.8
Tls2C-AAT-98-SAT25.6
E35/M48-F-189-SAT28.8
1A39-061-SAT29.6
Tls2C-AAG-07-SAT30.9
1A37-087-SER33.4
E35/M48-F-204-SAT34.8
1A39-344-SER35.9
Tls2C-AAC-90-SER37.3
1A39-205-SAT38.7
E35/M49-F-060-SAT39.3
E44/M48-F-133-SER39.4
Tls2C-ACT-13-SER40.4
17-ser41.1
04-sat42.1
E35/M59-F-429-SER42.4
16-sat43.5
1A36-134-SER43.9
Tls2C-ATG-251-SER45.7
1A37-140-SER46.6
Tls2C-AAG-01-SER48.1
1A37-110-SAT49.2
Tls2C-CTG-112-SER50.6
E45/M48-F-314-SAT57.9
E35/M48-F-548-SER58.0
Tls2C-ATC-06-SER60.5
1A31-170-SER61.6
E35/M59-F-101-SER63.2
Tls2C-ATA-02-SER64.5
1A38-154-SER65.0
Tls2C-CTT-02-SER66.8
E35/M48-F-188-SAT67.3
Tls2C-ACT-01-SER68.6
Tls2C-TCC-80-SAT71.0
E35/M49-F-146-SER72.1
Tls2C-ACT-14-SAT72.9
E44/M49-F-185-SER90.0
1A36-223-SAT90.7
E35/M48-F-107-SAT94.2
Tls2C-ATA-09-SER97.0
1A36-058-SAT110.1
1A37-107-SAT126.9
Tls2C-CTA-165-SER128.8
Tls2C-GTT-271-SER149.0

5.1
9.5

12.9
14.0
18.4
21.0
25.6
31.3
31.5
35.7
38.6
42.0
43.6
45.7
52.9
54.8
57.4
57.9
58.0
58.5
59.5
60.8
62.1
64.2
72.1
76.5
79.3
80.6
86.7
90.2

115.0
128.2
129.6
133.6
141.5
143.3

02-ser
E44/M48-F-262-SER
1A36-077-SER
Tls2C-CTA-132-SAT
Tls2C-GTG-151-SER
Tls2C-CTA-203-SER
Tls2C-AAG-03-SAT
1A37-180-SER
Tls2C-ACT-15-SAT
Tls2C-AAC-101-SER
Tls2C-ATT-08-SAT
Tls2C-ATC-08-SAT
E45/M48-F-479-SER
1A40-157-SER
Tls2C-AAC-230-SAT
E35/M49-F-309-SER
1A36-189-SAT
Tls2C-CTC-02-SAT
E35/M59-F-339-SAT
E45/M48-F-427-SER
Tls2C-ATC-01-SAT
1A40-443-SAT
E44/M49-F-184-SAT
E44/M49-F-175-SER
1A38-212-SAT
Tls2C-CTC-13-SER
E35/M49-F-130-SAT
E35/M49-F-252-SER
Tls2C-CTA-98-SER
E44/M49-F-087-SAT
E35/M48-F-391-SAT
E35/M59-F-247-SER
Tls2C-CTT-07-SAT
Tls2C-CTT-15-SAT
1A31-176-SER
19-sat
25-ser
E45/M48-F-210-SAT
Tls2C-TCC-123-SER
E35/M59-F-183-SAT
E35/M59-F-096-SAT
E35/M48-F-079-SAT
E45/M48-F-153-SER
Tls2C-ATA-07-SAT
E45/M48-F-095-SER
E35/M48-F-130-SER
Tls2C-AAG-04-SER
1A31-237-SER
Tls2C-ATC-07-SAT C09C-ACT-07-SAT
Tls2C-ACT-02-SER
Tls2C-TCT-94-SAT

LG9

LG10

0.0
4.9

15.2
19.5
20.3
23.6
24.4
27.4

LG7 28.1
31.2
34.30.0
36.52.0
39.33.8
41.0
42.6
45.3

LG8 46.4
49.5

0.0 49.7Tls2C-GTT-270-SAT
TLs2C-CTC-14-SER
E44/M48-F-209-SER
11-ser
E45/M48-F-067-SER
E35/M49-F-209-SAT
Tls2C-TCT-300-SAT
E44/M49-F-262-SAT
1A39-354-SAT
08-ser
E35/M48-F-134-SAT
Tls2C-CTC-05-SAT
E35/M48-F-290-SAT
Tls2C-GTT-195-SAT
Tls2C-CTG-92-SER
1A39-466-SAT
E45/M48-F-188-SER

0.5 51.6
0.9 53.1

59.5
60.3
60.7
68.3
73.2
77.2
78.9
81.4
82.0
85.9
87.6
92.6
93.9
95.6

100.2E35/M48-F-399-SER
102.5E35/M59-F-530-SER

Tls2C-ATC-09-SER
E35/M59-F-153-SAT
E44/M48-F-115-SAT
1A39-208-SAT
Tls2C-AAG-02-SAT
1A36-127-SAT
Tls2C-ATA-01-SER
Tls2C-CTG-370-SAT
1A31-146-SER
Tls2C-ACA-112-SAT
Tls2C-ATT-04-SER
E44/M48-F-141-SAT
Tls2C-GTT-370-SER
Tls2C-CTC-12-SAT
1A31-251-SER
1A36-323-SAT
1A39-287-SAT
Tls2C-AAT-248-SAT
Tls2C-ACA-155-SAT
E44/M48-F-192-SAT

104.6
106.1
108.1
113.1
116.6

E35/M48-F-158-SAT119.2
122.5
124.4
126.6
127.7
132.9
133.4
137.0
140.3

Tls2C-AAC-272-SAT0.0

38-ser13.9
1A39-113-SAT18.3
E45/M48-F-197-SER19.1
Tls2C-ATT-11-SAT23.4
E45/M48-F-079-SER27.7
E35/M59-F-122-SAT31.8
E44/M48-F-212-SER33.0
1A38-181-SER35.1
1A31-276-SAT39.7

1A40-088-SER167.7
Tls2C-ATA-08-SAT173.0

Fig. 4 (Contd.)
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of the Asteraceae in the databases. Thus, the sequences
which were not identified might actually be RGAs, but
their sequence similarity to the relatively few known
RGAs is too low to allow positive identification. How-
ever, we cannot exclude the possibility that a sizeable
fraction of the NBS-LRR markers described here in fact
derive from other sequence types.

The detailed linkage map of lettuce, which we have
developed spans 1,266 cM, with an average distance of
2.76 cM between adjacent mapped markers. 32% of
the AFLP markers are also found on the integrated
linkage map of lettuce (Jeuken et al. 2001), allowing
accurate cross-referencing between the two maps and
giving us the opportunity in the future to exploit the
much larger number of markers in the integrated map.
The inclusion of SSAP markers in our map further
provides efficient, stable and extensive coverage of the
lettuce genome, because inserted copies of retrotrans-
posons do not excise from their sites, unlike DNA
transposons (Schulman et al. 2004). The usefulness of
SSAP for studying genetic diversity, mapping popula-
tions and species relationships has been reported for
barley (Waugh et al. 1997; Leigh et al. 2003; Schulman
et al. 2004), pea (Ellis et al. 1998; Pearce et al. 2000),
wheat (Gribbon et al. 1999; Queen et al 2004), oat (Yu
and Wise 2000) and alfalfa (Porceddu et al. 2002). This
property of genomic stability will give the map shown
here an added value.

Some published AFLP linkage maps show clustering
of these markers in centromeric regions, due to an excess
of repeats in this area and suppressed recombination
shrinking the genetic map relative to the DNA content
(Jeuken et al. 2001), (Qi et al. 1998; Haanstra et al. 1999;
Vuylsteke et al. 1999; Young et al. 1999). Only a small
amount of overall clustering was observed in our map
and this is confined to LGs 1, 3, 5, 7 and 8 (Fig. 4). Two
sets of closely linked NBS markers are also apparent on
LGs 7 and 9. These may represent the sites of NBS-LRR
RGA clusters. The RGA cluster containing the impor-
tant Dm3 fungal resistance gene is located at ca. 25 cM
on LG2. This might correspond with NBS marker 23-ser
or 21-ser (13.2 and 29.0 cM, respectively on our map).

The diverse molecular markers and the linkage map
described here will be useful both to the analysis of
gene flow between cultivated and wild forms of the
Lactuca genus and to the lettuce breeding and genomic
communities in general. The primary reason for
choosing the genetic mapping population reported here
was to reveal a large number of mapped markers which
will be useful in studying the consequences of gene flow
from cultivated lettuce into the wild on contamination
of the wild germplasm and associated fitness effects, as
a model for GM crop release. Like several other crop
species cultivated lettuce co-exists with wild sibling
species, with which it can interbreed. Further studies
are currently underway using this map to screen for
selection of crop-specific genomic segments in semi-
natural experimental conditions (D.A.P. Hooftman
et al., unpublished data). The good distribution of

SSAP markers on the map described here will aid this
analysis. In other crops it has been found that SSAP
markers have higher polymorphism rates than AFLP
markers and therefore perform better in the analysis of
genetic diversity (Ellis et al. 1998; Queen et al. 2004).
Inclusion of SSAP markers has therefore increased the
potential usefulness of this lettuce map for biodiversity
studies in lettuce.
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